
So�ware Development (cs2500)
Lecture 51: �e Strategy Pattern

M. R. C. van Dongen

February 28, 2011

1 Outline
�ese lectures studies the famous Strategy Design Pattern. �e pattern de�nes a class of algorithms,
encapsulates each one, and makes them interchangeable. It lets the algorithms vary independently from
clients using it [Gamma et al., 2008]. In addition it explores three design principles: (1) encapsulate
what varies, (2) program to an interface, not to an implementation, and (3) favour composition over
inheritance. �is lecture is based on [Freeman and Freeman, 2005; Gamma et al., 2008].

2 Introduction
Joe works at SimuDuck™. SimuDuck™ specialises in duck pond simulation games. �ese games involves
lots of quacking and swimming ducks. Joe is in charge of SimuDuck™’s most popular game. �e game is
written in Java and is based on inheritance.

3 Initial Design
Figure 1 depicts some of the design. In reality, there are an impressive 50 or so more Duck subclasses. All
subclasses inherit the quack() and swim() behaviour, except for the RubbrDuck class which overrides
the quack() behaviour. Each subclass overrides the display() method so subclass instances display
the right picture.

4 Enters Mr Change
�e economy was in a dip and competition was tough. �is explains why Joe’s boss decided that
SimuDuck™’s application needed something extra. �e next time he saw Joe he told him he wanted the
ducks to �y.

1

Duck

quack()
swim()
display()

RedheadDuck

display()

MallardDuck

display()

RubberDuck

display()
quack()

Figure 1: Initial design of game.

5 Inheritance Issues
Figure 2 shows how Joe �xed the problem. He simply added a fly() method to the Duck class. All
subclasses in this design immediately inherit the default behaviour. He handed in his solution and it was
included in the next release of the duck simulator program.

�e �rst day a�er the release, Joe was called in to his boss’ o�ce. His boss had just received a phone
call from one of the top clients. It turned out they had RubberDucks �ying all over the screen. �anks to
Joe’s class design all subclasses of the Duck class inherited the default fly() behaviour. �is included
the RubberDuck class…. Really, this should have never happened.

Needless to say, Joe’s boss wasn’t impressed. Joe was sent back to his o�ce to �x the problem.

6 Design Options
So, what should Joe do? Should he override fly() in the RubberDuck class? If he did that he might have
to duplicate code later. For example what if a WoodenDecoyDuck had to be added to the app. RubberDuck
and WoodenDecoyDuck would be almost identical, yet share no code…. Of course he could introduce a
common superclass for the RubberDuck and the WoodenDecoyDuck. But that would mean much work.
Also there was no guarantee that work would stop there.

Hmmm, …. Should Joe consider getting rid of overriding? For example, what about using an interface?
Figure 3 shows Joe’s design with interfaces. Clearly, this really cannot be the solution. All ducks have to
implement the interfaces Flyable and Quackable. For most subclasses the implementations of fly()
and quack() are identical, which causes lots of code duplication. Surely, this cannot be the way to add
fly() behaviour.

Joe really wants so�ware that doesn’t change. A�er all, the only constant thing in so�ware development
is change. (No matter how well he designs the so�ware, his boss or a customer will eventually change
the specs or ask for new features.) So if code changes this should have no impact on existing code. �at

2

Duck

quack()
swim()
display()
fly()

RedheadDuck

display()

MallardDuck

display()

RubberDuck

display()
quack()

Figure 2: Game design a�er adding the fly() behaviour.

Duck

swim()
display()

«interface»
Flyable

fly()

«interface»
Quackable

quack()

RedheadDuck

display()
fly()
quack()

MallardDuck

display()
fly()
quack()

RubberDuck

display()
fly()
quack()

Figure 3: Design a�er adding interfaces for fly() and quack() behaviour.

3

would save much time rewriting existing code.

7 Encapsulate what Varies
We’ve seen that inheritance hasn’t worked out for Joe. When the Duck class changes this a�ects all
subclasses. �e interfaces look nice, but they have no implementation: no reuse of code. �e following
design principle may help Joe:

Design Principle 1 (Identify what Varies). Identify the aspects of your application that vary and separate
them �om what stays the same.

Applying the principle, the implementation (of what varies) won’t a�ect the remaining code. �is
reduces the number of potential code change locations. It increases the �exibility of the so�ware.

In Joe’s last design most classes implemented Flyable and Quackable (because the behaviour of these
interfaces is what varies). �is is what caused the code duplication. What we’re going to do is encapsulate
what varies:

• We separate what varies: fly() and quack() behaviour.

• We de�ne a Flyable and a Quackable interface. We encapsulate each speci�c fly() behaviour as a
separate concrete class that implements the interface Flyable. We encapsulate each speci�c quack(
) behaviour as a separate concrete class that implements the interface Quackable.

• We reuse the behaviour in the actual Duck subclasses. �is is done using delegation. (It involves a
design pattern.)

8 Program to an Interface

We need to design (lots of) classes that implement behaviour. We want to assign the behaviour
to speci�c Duck instance attributes. Assiging behaviour could even be done at runtime. �e following
design principle is exactly what we need:

Design Principle 2 (Program to an Interface). Program to an interface, not an implementation.1

We use an interface for each behaviour: Flyable, Quackable, …. Speci�c classes implement speci�c
behaviours. We use instances of these classes to use the behaviour. Before we depended on an imple-
mentation: the implementation of the default behaviour in the Duck class or the implementation of
the overridden methods. Now we depend on an interface, an object with a type. Client classes are
now completely unaware of the actual type and class of the object. �is greatly reduces subsystem
dependencies.

We’ve come a long way. A�er all the hard work we’re �nally ready to integrate the Duck behaviour.
Figure 4 depicts the new Duck class design.

1Here the word “interface” should be interpreted as “supertype”.

4

Duck
private Flyable flyBehaviour
private Quackable quackBehaviour

public final fly() { flyBehaviour.fly(); }
public final quack() { quackBehaviour.quack(); }
public swim()
public display()

Figure 4: �e new Duck class.

�ere are three important changes. First each Duck instance has two attributes which determine the
instance’s actual behaviour.

�e second change is that the implementations of fly() and quack() now simply delegate the
behaviour to the new attributes. Of course the methods fly() and quack() are made �nal, so they
cannot be overridden.

�e third di�erence depends on the current design. Notice that the attributes of the Duck are not
final. As a consequence we can now even change Duck behaviour at runtime. �is may be useful for a
MutableDuck.

Implementing speci�c Duck subclasses is straightforward. �e following demonstrates the Mallard-
Duck class.
public class MallardDuck extends Duck {

public MallardDuck() {
quackBehaviour = new SqueekQuack();
flyBehaviour = new FlyWithWings();

}

@Override
public void display() {

System.out.println("MallardDuck here....");
}

}

Java

Implementing the MutableDuck class is not much di�erent.

5

public class MutableDuck extends Duck {
public MutableDuck() {

quackBehaviour = new SqueekQuack();
flyBehaviour = new FlyWithWings();

}

public void setQuackBehaviour(Quackable behaviour) {
quackBehaviour = behaviour;

}

public void setFlyBehaviour(Flyable behaviour) {
flyBehaviour = behaviour;

}

@Override
public void display() {

System.out.println("MutableDuck here....");
}

}

Java

9 Favour Composition
Inheritance: Lets us create subclasses: white-box reuse

• Each subclass automatically inherits superclass behaviour.

• Subclasses can override superclass behaviour.

• You get code reuse for free.

• You cannot change behaviour at runtime.

• Breaks encapsulation. Subclasses may start to rely on superclass implementation. �e subclass
may break when the superclass is changed.

Composition: Lets you compose classes: black-box reuse

• A client class can use an object.

• You get code reuse but it takes more e�ort.

• Lets you change behaviour at runtime.

• Respects encapsulation. �is helps encapsulated classes focus on a single task.

In our new design we rely on Has-A (more then on Is-A): each Duck has-a flyBehaviour, and each
Duck has-a quackBehaviour. �e “Has-A” relationship allows us to obtain behaviour by composing classes.
(As opposed to obtaining it by inheritance—because each subclass instance is-a Duck.) �e result is a
more �exible design: It let’s us encapsulate behaviour. We can change behaviour at runtime. �is brings
us to our third design principle:

Design Principle 3 (Favour Composition over Inheritance). Favour Composition over Inheritance

6

Client
behaviour:Behaviour

«interface»
Behaviour

behaviour()

ConcreteBehaviourA

behaviour()

ConcreteBehaviourB

behaviour()

Client using behaviour Encapsulated behaviour

Speci�c behaviour implementation

implements

has a

Figure 5: Strategy Pattern in uml. Based on [Gamma et al., 2008, Page 316], which uses Context for
Client, Strategy for Behaviour, ConcreteStrategyA–B for ConcreteBehaviourA–B, and Algorith-
mInterface() for behaviour().

10 �e Strategy Pattern
�e technique which we’ve used to implement fly() behaviour �exibly is a commonly used design
pattern which is known as the Strategy Pattern.

Design Principle 4 (Strategy Pattern). �e Strategy Pattern de�nes a class of algorithms, encapsulates
each one, and makes them interchangeable. It lets the algorithms vary independently �om clients using
it [Gamma et al., 2008].

Figure 5 depicts the design pattern graphically.

11 ForWednesday
Study the lecture notes.

12 Acknowledgements
�is lecture is based on [Freeman and Freeman, 2005, Chaper 1] and [Gamma et al., 2008].

7

References
[Freeman and Freeman, 2005] Eric Freeman and Elisabeth Freeman. Head First Design Patterns.

O’Reilly, 2005.

[Gamma et al., 2008] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
Elements of Reusable Object-Oriented So�ware. Addison–Wesley, 2008. 36th Printing.

8

	Outline
	Introduction
	Initial Design
	Enters Mr Change
	Inheritance Issues
	Design Options
	Encapsulate what Varies
	Program to Interface
	Favour Composition
	The Strategy Pattern
	For Wednesday
	Acknowledgements

